26 October 2023

Material Uplift in Faraday Lithium Grades

Highlights

- Re-assaying of drill samples from Faraday has returned materially higher lithium results than previously reported.
- 3,371 samples re-assayed.
- Results have produced up to a 64% increase in lithium grade.
- Assay results to form part of a materially enhanced Mineral Resource Estimate (MRE) at Faraday and a maiden MRE at Trainline.
- Results confirm shallow, continuous and higher-grade mineralisation at both deposits in the heart of the Kambalda lithium corridor.

Hole ID	Prospect	Depth From (m)	Depth to (m)	Interval (m)	4-Acid Li2O%	Fusion Li2O%	Diff.
23MERC014*	Faraday	13	26	13	0.87	1.12	29 %
23MERC056*	Faraday	4	16	12	0.91	1.28	41%
23MERC062*	Faraday	21	31	10	0.62	0.80	29 %
23MERC080*	Faraday	31	37	6	0.90	1.47	63 %
23MERC118#	Trainline	17	26	9	0.82	1.19	45%
23MERC132#	Trainline	137	142	5	0.69	0.91	32%

Illustration of Grade Uplift from Previously Reported Intercepts:

* Widgie Fast-tracks Faraday Lithium Deposit for DSO Opportunity. Released 14/02/2023

* New Lithium Discoveries Position Widgie for Resource Growth. Released 4/07/2023

Widgie Nickel's Managing Director and CEO, Mr Steve Norregaard, commented:

"Our lithium plans have received an important boost with these results which has led to both an uplift in scale and grade of our lithium resources which we expect to quantify in the very near future.

"We are now prioritising an updated Mineral Resource Estimate (MRE) for Faraday and a maiden MRE at the Trainline prospect. With mining approvals in place, proven and favourable metallurgy set to provide Widgie with multiple opportunities to demonstrate the value of its lithium endowment in the near future."

Widgie Nickel Ltd (ASX: **WIN**) ("**Widgie**" or "**the Company**") is pleased to provide an update on its Faraday Lithium Project ("**Faraday**") and Trainline Prospect (**Trainline**).

Re-assaying Expected to Result in MRE Grade Increase

The Company concluded drilling used in calculating the maiden Mineral Resource Estimate (MRE) for Faraday in January 2023.

However, assay results from subsequent diamond holes at Faraday that had been drilled for metallurgical testwork twinning existing reverse circulation (RC) holes suggested a discrepancy between the diamond and the RC results. An internal investigation concluded the initial assaying methodology recommended by the laboratory was inappropriate for Faraday mineralisation.

A comprehensive re-assaying program of 3,371 samples of mineralisation has confirmed a positive bias using a fusion method. This assay issue applied to exploration/step out drilling along with recently completed 10m x 10m grade control drilling within the proposed Faraday pit shell and intial reconnaisance drilling to the north which delineated the Trainline prospect.

Based on the latest results, and subsequent drilling on each deposit it is expected that recalculation of the MRE for Faraday and inclusion of Trainline will result in a materially higher lithium grade and increase in size.

Background

An initial sample analysis on 18 drillholes (MERC241-MERC258) in 2022 at Faraday was completed by Nagrom Commercial Laboratory (Nagrom) in Kelmscott, Western Australia. Nagrom carried out a twostage analysis process utilising a Peroxide Fusion with ICP-OES finish for Li, B, Be, Cs, Rb and a Li Borate Fusion with XRF finish for Al, Ba, Ca, Fe, K, Mg, Mn, Nb, P, S, Sn, Sr, Ta, W.

In January 2023, Intertek Genalysis (Intertek) was engaged for intial work focussing on lithium analysis. Upon receiving the first samples, Intertek was unable to complete the work using the fusion method due to lack of availability of nickel crucibles required for this process. Instead, Intertek recommended Widgie use an alternative 4-Acid digest method as an appropriate substitute.

On this recommendation, the Company proceeded with submitting 1,198 samples to Intertek to be assayed.

The 4-Acid assay results, along with 485 sample assays received initially from Nagrom, were combined to inform the maiden MRE for the Faraday Lithium Project of 481kt @ 0.59% Li₂O (0.30% Li₂O cut-off).

All QA/QC standards, blanks and field duplicates performed satisfactorily for both 4-Acid and Fusion methods (Refer Competent Person Statement for the Mineral Resource Estimate as released to the ASX on 29 March 2023).

Intertek subsequently secured nickel crucibles in April 2023 and were able to perform Fusion analyses thereafter. The Company then commenced using the Fusion method in tandem with the 4-Acid Digestion method.

The Company initiated a review comparing assay results between the 4-Acid and Fusion methods by re-submitting in aggregate 651 pulp samples for Fusion analysis at Intertek that had originally been assayed via the 4-Acid method.

The results demonstrated a significant bias, as previously reported (refer ASX announcement – 27 September 2023 - Higher grade Lithium to come on the cusp of being shovel ready at Faraday). The updated Q-Q Plot (Figure 1 below) represents all returned Fusion samples (3,371) supporting a positive bias towards the Fusion method.

The Company and Intertek have agreed that the 4-Acid methodology was not appropriate for assaying Faraday & Trainline's lithium mineralisation. All mineralised intervals that were previously analysed using the 4-Acid method have now been re-assayed via the Fusion method.

A full list of comparative assays, not previously reported, is provided in the following Table 2.

Figure 1 Q-Q plot demonstrating grade bias towards Fusion method (red line indicates perfect correlation, 1:1 relationship)

Faraday Location

The Faraday-Trainline Lithium Project area is located on Mining Lease M15/102, 4km west north-west of the Widgiemooltha townsite. Access is via the Coolgardie-Norseman Rd, 63km south of Coolgardie. Faraday is central to Widgie's Mt Edwards Project, covering a significant land holding within the *"Lithium Corridor"* between Mt Marion to the north and Pioneer Dome to the south (**Figure 2**).

Figure 2 Regional Geology showing Faraday and Trainline Lithium Project location, and surrounding Lithium Projects

Geology and Lithium Mineralisation

The Mt Edwards Project lithium tenements cover the northern margin of the Widgiemooltha Dome. The mineralisation at the Faraday-Trainline Lithium Project is hosted within Lithium-Caesium-Tantalum (LCT) pegmatites associated with a late-stage fractionated granitic intrusions.

The stacked pegmatites intrusives are hosted steeply dipping mafic/ultramafic country rock. The pegmatites are shallowly dipping to the west at 20° and are found to be outcropping in places. The pegmatite widths vary from 1m to 14m in thickness, with greater thicknesses observed within the ultramafic host. The pegmatites have been mapped over a strike extent of 750m from north-south and remain open at depth.

Competent Person Statement – Exploration Results

The information in this announcement that relates to exploration results and sampling techniques is based on and fairly represents information and supporting documentation compiled by Mr William Stewart, who is a full-time employee of Widgie Nickel Limited. Mr Stewart is a member of the Australian Institute of Metallurgy and Mining (member no 224335) and Australian Institute of Geoscientists (member no 4982). Mr Stewart has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Stewart consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Compliance Statement

The information in this report that relates to Exploration Results are extracted from the ASX Announcements listed in the table below, which are also available on the Company's website <u>www.widgienickel.com.au</u>.

Date	Title
08/12/2022	Initial Assays Confirm High Grade Lithium Discovery at Faraday
09/01/2023	Further Assays Reaffirm High-grade Lithium Discovery at Faraday
14/02/2023	Widgie Fast-tracks Faraday Li ₂ O Deposit for DSO Opportunity
29/03/2023	Maiden Resource Proves Up Faraday DSO Stater Pit Opportunity
08/05/2023	Faraday Mining Proposal Lodged
04/07/2023	New lithium Discoveries Position Widgie for Resource Growth
02/08/2023	Faraday Metallurgical Testwork-Excellent Flotation Response
04/08/2023	Faraday Mining Proposal Approved
27/09/2023	Higher grade Lithium to come on the cusp of being shovel ready at Faraday
02/10/2023	Drilling Delivers High-grade Lithium at Trainline
27/10/2023	Higher grade Lithium to come on the cusp of being shovel ready at Faraday

 Table 1 Compliance Statement

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

26 October 2023

Approved by: Board of Widgie Nickel Ltd

-ENDS-

For further details please contact

Steve Norregaard Managing Director <u>steve@widgienickel.com.au</u> 0472 621 529

Media & Broker Inquiries: Steve Kaless White Noise Communications

steve@whitenoisecomms.com +618 6556 8614

Table 2 Previously reported 4-Acid versus new Fusion Assay Results

Hole ID	Prospect	Depth From	Depth to	Interval	4-Acid	Fusion	Announcement
посети	Prospect	(m)	(m)	(m)	Li₂O%	Li ₂ O%	date
23MERC001	Faraday	4	6	2	1.15	1.39	14/02/2023
23MERC002	Faraday	2	4	2	0.89	1.01	14/02/2023
23MERC003	Faraday	5	13	8	0.75	0.87	14/02/2023
incl.	Faraday	6	7	1	1.10	1.33	14/02/2023
incl.	Faraday	10	13	3	0.95	1.16	14/02/2023
23MERC004	Faraday	6	14	8	0.94	1.15	14/02/2023
23MERC005	Faraday	8	18	10	0.82	0.89	14/02/2023
23MERC006	Faraday	15	25	10	1.04	1.33	14/02/2023
23MERC007	Faraday	30	38	8	0.65	0.88	14/02/2023
23MERC008	Faraday		NSI				14/02/2023
23MERC009	Faraday	1	6	5	0.61	0.84	14/02/2023
23MERC010	Faraday	0	10	10	0.58	0.74	14/02/2023
23MERC011	Faraday	1	6	5	0.61	0.79	14/02/2023
23MERC012	Faraday	6	17	11	0.77	0.94	14/02/2023
incl.	Faraday	12	17	5	1.00	1.20	14/02/2023
23MERC013	Faraday	8	24	16	0.74	0.88	14/02/2023
incl.	Faraday	13	20	7	1.02	1.20	14/02/2023
23MERC014	Faraday	13	26	13	0.87	1.12	14/02/2023
incl.	Faraday	23	26	3	1.28	1.54	14/02/2023
23MERC015	Faraday	4	14	10	0.39	0.53	14/02/2023
23MERC016	Faraday	8	12	4	0.94	1.26	14/02/2023
23MERC017	Faraday	10	25	15	0.66	0.85	14/02/2023
incl.	Faraday	16	21	7	1.08	1.39	14/02/2023
23MERC018	Faraday	14	17	3	0.67	0.72	14/02/2023
and	Faraday	22	31	9	0.79	0.95	14/02/2023
23MERC019	Faraday	19	34	15	0.84	0.95	14/02/2023
incl.	Faraday	23	33	10	1.00	1.12	14/02/2023
23MERC020	Faraday	7	12	5	0.87	1.04	14/02/2023
23MERC021	Faraday	1	15	14	0.30	0.35	14/02/2023
23MERC022	Faraday	6	16	10	0.30	0.37	14/02/2023
23MERC023	Faraday	8	15	7	0.66	0.97	14/02/2023
incl.	Faraday	9	11	2	1.07	1.58	14/02/2023
23MERC024	Faraday	17	20	3	0.37	0.49	14/02/2023
23MERC025	Faraday	19	26	7	0.68	0.86	14/02/2023
23MERC026	Faraday	9	11	2	0.74	0.92	14/02/2023
23MERC027	Faraday	3	17	14	0.57	0.73	14/02/2023
incl.	Faraday	3	6	3	0.80	1.07	14/02/2023
incl.	Faraday	11	17	6	0.77	0.95	14/02/2023
23MERC028	Faraday	6	12	6	0.75	0.99	14/02/2023
23MERC029	Faraday	8	21	13	0.37	0.50	14/02/2023
23MERC030	Faraday	16	20	4	0.63	0.85	14/02/2023

26 October 2023

Hole ID	Prospect	Depth From (m)	Depth to (m)	Interval (m)	4-Acid Li₂O%	Fusion Li₂O%	Announcement date
23MERC031	Faraday	17	26	9	0.67	0.81	14/02/2023
23MERC032	Faraday	26	29	3	0.58	0.76	14/02/2023
23MERC033	Faraday		NSI				14/02/2023
23MERC034	Faraday	3	12	9	0.59	0.71	14/02/2023
incl.	Faraday	3	4	1	1.30	1.48	14/02/2023
incl.	Faraday	10	11	1	1.12	1.43	14/02/2023
23MERC035	Faraday	8	17	9	0.48	0.62	14/02/2023
23MERC036	Faraday	9	19	10	0.34	0.55	14/02/2023
23MERC037	Faraday	12	21	9	0.74	1.03	14/02/2023
23MERC038	Faraday	13	23	10	0.67	0.96	14/02/2023
23MERC039	Faraday	18	28	10	0.39	0.48	14/02/2023
incl.	Faraday	23	24	1	1.73	1.98	14/02/2023
23MERC040	Faraday	2	14	12	0.68	0.88	14/02/2023
incl.	Faraday	6	9	3	1.09	1.48	14/02/2023
23MERC041	Faraday	4	6	2	0.78	0.87	14/02/2023
and	Faraday	9	20	11	0.43	0.53	14/02/2023
23MERC042	Faraday	12	21	9	0.49	0.58	14/02/2023
23MERC043	Faraday	8	20	12	0.73	0.96	14/02/2023
incl.	Faraday	11	15	4	1.13	1.46	14/02/2023
23MERC044	Faraday	17	29	12	0.43	0.54	14/02/2023
23MERC045	Faraday	1	12	11	0.48	0.58	14/02/2023
23MERC046	Faraday	4	17	13	0.36	0.45	14/02/2023
23MERC047	Faraday	7	17	10	0.62	0.79	14/02/2023
incl.	Faraday	7	8	1	1.00	1.11	14/02/2023
incl.	Faraday	11	15	4	0.99	1.33	14/02/2023
23MERC048	Faraday	16	24	8	0.77	1.15	14/02/2023
23MERC049	Faraday	6	7	1	1.01	1.27	14/02/2023
and	Faraday	12	19	7	0.56	0.63	14/02/2023
23MERC050	Faraday	1	8	7	0.51	0.59	14/02/2023
23MERC051	Faraday	0	6	6	1.11	1.28	14/02/2023
23MERC052	Faraday	6	8	2	0.98	1.04	14/02/2023
and	Faraday	12	21	9	0.47	0.61	14/02/2023
incl.	Faraday	12	15	3	0.75	0.93	14/02/2023
23MERC053	Faraday	4	8	4	0.58	0.77	14/02/2023
23MERC054	Faraday	4	12	8	0.55	0.76	14/02/2023
23MERC055	Faraday	11	18	7	0.71	0.98	14/02/2023
23MERC056	Faraday	4	16	12	0.91	1.28	14/02/2023
incl.	Faraday	5	7	2	1.45	2.04	14/02/2023
incl.	Faraday	11	13	2	1.36	1.72	14/02/2023
23MERC057	Faraday		NSI				14/02/2023
23MERC058	Faraday		NSI				14/02/2023
23MERC059	Faraday	19	28	9	0.26	0.34	14/02/2023
23MERC060	Faraday	32	45	13	0.27	0.33	14/02/2023
23MERC061	Faraday	32	40	8	0.47	0.68	14/02/2023
23MERC062	Faraday	5	6	1	1.95	2.48	14/02/2023
and	Faraday	21	31	10	0.62	0.80	14/02/2023
incl.	Faraday	24	26	2	1.00	1.22	14/02/2023
and	Faraday	38	40	2	0.77	0.88	14/02/2023
23MERC063	Faraday		NSI				14/02/2023
23MERC064	Faraday	0	7	7	0.25	0.32	14/02/2023
23MERC065	Faraday	6	13	7	0.41	0.53	14/02/2023
23MERC066	Faraday	10	16	6	0.52	0.70	14/02/2023
23MERC067	Faraday	2	5	3	0.51	0.52	14/02/2023

T: +61 8 6381 7250 F: +61 8 6381 7299

26 October 2023

Hole ID	Prospect	Depth From	Depth to	Interval	4-Acid	Fusion	Announcement
and	Faraday	(m) 14	(m) 19	(m) 5	Li₂O% 0.78	Li ₂ 0%	date 14/02/2023
23MERC068	Faraday	21	19 27	5 6	0.78	0.76	14/02/2023
23MERC008 23MERC069	Faraday	4	18	14	0.25	0.36	14/02/2023
23MERC009	Faraday	4 12	16	4	0.23	1.16	14/02/2023
23MERC080	Faraday	31	37	4 6	0.90	1.10	14/02/2023
23MERC106	Trainline	51	NSI	0	0.30	1.47	4/07/2023
23MERC100	Trainline		NSI				4/07/2023
23MERC108	Trainline		NSI				4/07/2023
23MERC108	Trainline	39	43	4	0.59	0.73	4/07/2023
incl.	Trainline	41	42	1	0.92	1.19	4/07/2023
23MERC110	Trainline	42	51	9	0.47	0.53	4/07/2023
incl.	Trainline	48	50	2	0.87	0.94	4/07/2023
23MERC111	Trainline	40	NSI	~	0.07	0.04	4/07/2023
23MERC112	Trainline		NSI				4/07/2023
23MERC113	Trainline	30	37	7	0.61	0.7	4/07/2023
incl.	Trainline	30	33	3	0.94	1.17	4/07/2023
23MERC114	Trainline	43	53	10	0.68	0.88	4/07/2023
incl.	Trainline	43	50	7	0.79	1.02	4/07/2023
23MERC115	Trainline	61	64	3	0.44	0.52	4/07/2023
23MERC116	Trainline	01	NSI	Ű	0.11	0.02	4/07/2023
23MERC117	Trainline		NSI				4/07/2023
23MERC118	Trainline	4	6	2	0.86	1.19	4/07/2023
and	Trainline	17	26	9	0.82	1.19	4/07/2023
incl.	Trainline	22	26	4	1.19	1.63	4/07/2023
23MERC119	Trainline	8	13	5	0.60	0.77	4/07/2023
and	Trainline	38	52	14	0.41	0.56	4/07/2023
23MERC120	Trainline	67	74	7	0.35	0.00	4/07/2023
23MERC121	Trainline		NSI	,	0.00	0.12	4/07/2023
23MERC122	Trainline		NSI				4/07/2023
23MERC123	Trainline		NSI				4/07/2023
23MERC124	Trainline		NSI				4/07/2023
23MERC125	Trainline		NSI				4/07/2023
23MERC126	Trainline		NSI				4/07/2023
23MERC127	Trainline		NSI				4/07/2023
23MERC128	Trainline	77	79	2	0.49	0.68	4/07/2023
23MERC129	Faraday	23	24	1	0.89	1.05	4/07/2023
and	Faraday	92	95	3	0.63	0.63	4/07/2023
23MERC130	Faraday	97	100	3	0.38	0.41	4/07/2023
incl.	Faraday	97	98	1	0.73	0.81	4/07/2023
23MERC131	Faraday	99	102	3	0.63	0.74	4/07/2023
incl.	Faraday	100	101	1	1.20	1.43	4/07/2023
and	Faraday	105	109	4	0.47	0.64	4/07/2023
23MERC132	Faraday	130	132	2	0.55	0.62	4/07/2023
and	Faraday	137	142	5	0.69	0.91	4/07/2023
incl.	Faraday	137	140	3	0.87	1.14	4/07/2023
23MERC133	Faraday	100	104	4	0.36	0.35	4/07/2023
23MERC134	Faraday	NSI				4/07/2023	
23MERC135	Faraday	NSI				4/07/2023	
23MERC136	Trainline	NSI					4/07/2023
23MERC137	Trainline	NSI					4/07/2023
23MERC138	Trainline		NSI				4/07/2023
23MERC139	Trainline		NSI				4/07/2023
23MERC140	Trainline		NSI				4/07/2023

T: +61 8 6381 7250 F: +61 8 6381 7299

26 October 2023

Hole ID	Prospect	Depth From (m)	Depth to (m)	Interval (m)	4-Acid Li₂O%	Fusion Li₂O%	Announcement date
23MERC141	Trainline		NSI				4/07/2023
23MERC142	Trainline	46	48	2	0.35	0.37	4/07/2023
23MERC143	Trainline		NSI				4/07/2023
23MERC144	Trainline		NSI				4/07/2023
23MERC145	Trainline	54	56	2	0.45	0.47	4/07/2023
and	Trainline	61	68	7	0.36	0.36	4/07/2023
23MERC146	Trainline		NSI				4/07/2023
23MERC147	Trainline		NSI				4/07/2023
23MERC148	Trainline		NSI				4/07/2023
23MERC149	Trainline	109	111	2	0.51	0.68	4/07/2023
23MERC150	Trainline		NSI	-			4/07/2023
23MERC205	Trainline		NSI				4/07/2023
23MERC206	Trainline		NSI				4/07/2023
23MERC207	Trainline		NSI				4/07/2023

Drill hole details have been previously reported in:

Widgie Fast-tracks Faraday Lithium Deposit for DSO Opportunity. Released 14/02/2023 New Lithium Discoveries Position Widgie for Resource Growth. Released 4/07/2023 26 October 2023

Table 1 information in accordance with JORC 2012: Mt Edwards Lithium Exploration

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Section 1 Sampling	Techniques and Data
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry	No new exploration drilling data is discussed in this report. 137 RC drill holes have been previously reported at Faraday Lithium Project.
	standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc).	Assays from 111 RC grade control drill holes at Faraday have been used to inform this report. Grade control drilling results are not
	These examples should not be taken as limiting the broad meaning of sampling	considered to be material and therefore, not reported. All drilling discussed in this report is in relation to Reverse Circulatio
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems	(RC) drilling completed at the Faraday and Trainline Lithium Project between November 2022 and August 2023.
	used. Aspects of the determination of mineralisation that	All RC samples have been acquired at one metre intervals from a chute beneath a cyclone on the RC drill rig. Sample size was then reduced through a cone sample splitter. Two identical sub-samples
	are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that	have been captured in pre-numbered calico bags, with typical masses ranging between 2 and 3.5kg. Care was taken to ensure that both original sub-samples and duplicate sub-samples have been collected representatively, and therefore are of equal quantities. The remainder of the sample reject is retained in the short term in sample piles at the drill site.
	commodities or inte	All samples were submitted for assay at single metre sample intervals. With samples crushed, rotary split, pulverised to produce a homogenised 50-100g pulp sample ready for analysis.
		With sampling of the prospective pegmatite vein and 2-5m into the mafic/ultramafic waste rock host to ensure representative sampling
		No other measurement tools related to sampling have been used in the holes for sampling other than directional/orientation survey tools.
		Details of the two analysis methods outlined in this report are as follows.
		Primary samples were assayed by;-
		A four-acid (4-Acid method) digest. With an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish for Li only.
		The 3,371 pulp samples were re-submitted for comparison to the 4- Acid method in relation to this report were assayed by;-
		A sodium peroxide fusion (Fusion method) using nickel crucibles and hydrochloric acid to digest. With an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish for Al, B, Ba, Be, Ca Cs, Fe, K, Li, Mg, Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta and W.
Drilling Techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by	One hundred and thirty seven (137) RC drillholes and have been previously reported at Faraday-Trainline Lithium Project for 8,026m drilled. 3,371 RC samples were submitted (exploration and grade control) for re-assay outlined in this report.
	what method, etc).	The RC rig is a KWL350 with a face sampling auxiliary compressor and booster. Drill rods are 6 metres long and face sampling drill bit diameter of 143mm, and hence so is the size of drillhole diameter.

26 October 2023

	Section 1 Sampling	Techniques and Data
		Holes have been drilled at a nominal dip angle of -60° with varying azimuth angles to orthogonally intercept the interpreted favourable geological contact zones.
Drill	Method of recording and assessing core and chip	The sample recovery is logged by a geologist during drilling, and
Sample Recovery	sample recoveries and results assessed. Measures taken to maximise sample recovery and	recoveries have been considered acceptable. With all sampling being dry.
	ensure representative nature of the samples.	Minor sample loss was recognised while sampling the first metre of some drillholes due to very fine grain size of the surface and near-
	Whether a relationship exists between sample recovery and grade and whether sample bias may	surface material.
1.0 4410 4	have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade has been recognised.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	All RC drillholes have been geologically logged for lithology, weathering, alteration, and mineralogy.
	estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in	All samples have been logged in the field at the time of drilling and sampling (both quantitatively and qualitatively where viable), with spoil material and sieved rock chips assessed. All RC holes and chip trays are photographed.
	nature. Core (or costean, channel, etc) photography.	Geochemical analysis of each hole has been correlated back to
<u> </u>	The total length and percentage of the relevant intersections logged.	logged geology for validation.
Sub- sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling was undertaken for this report.
preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The sample preparation technique carried out in the field is considered industry best standard practice and was completed by the geologist.
	For all sample types, the nature, quality and appropriateness of the sample preparation	All samples were dry
	technique.	Samples collected at 1 metre intervals from a cyclone-mounted cone splitter to yield a 2 to 3 kg sub-samples, collected in the field, and sent to Intertek Kalgoorlie for receival then sorted and recorded.
		Individual samples were weighed as received and then dried in an oven for up to 12 hours at 105C.
		Samples >3 kg's were riffle split 50:50 and excess discarded. All samples were then pulverised in a LM5 pulveriser for 5 minutes to achieve 85% passing 75um. 1:50 grind checks were performed to verify passing was achieved.
		A 300g split was taken at the bowl upon completion of the grind and sent to the next facility for assay. The remainder of the sample (now pulverised) was bagged and retained until further notice.
		For each submitted sample, the remaining coarse sample (material) less the aliquot used for analysis has been retained, with the majorit retained and returned to the original calico bag and a nominal 100g portion split into a pulp packet for future reference.

26 October 2023

	Section 1 Sampling	Techniques and Data
Quality of assay data and laboratory tests	Section 1 Sampling Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Widgie Nickel has established QAQC procedures for all drilling and sampling programs including the use of commercial Certified Reference Material (CRM) as field and laboratory standards, field and laboratory duplicates and blanks. Lithium CRM samples have been inserted into the batches by the geologist, at a nominal rate of 5% of the total samples. Field duplicate samples have been taken in visibly mineralised zones, at a rate of 2% of total samples. Samples of blank material have been submitted immediately after visibly mineralised zones at a nominal rate of 5% of the total samples.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Sample size is considered appropriate to the grain size of the material being sampled. Samples were analysed at Intertek Perth, WA. Primary samples were assayed for lithium only via a four-acid digest. With an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish for Lithium only 3,371 samples were subjected to comparison analysis were assayed for lithium via a sodium peroxide fusion using nickel crucibles and hydrochloric acid to digest. With an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish. Internal sample quality control analysis was then conducted on each sample and on the batch by the laboratory. Results have been reported to Widgie Nickel in CSV, PDF and SIF formats. A detailed QAQC analysis was carried out with all results assessed for repeatability and meeting expected values relevant to lithium and related elements. Any failures or discrepancies were followed up as required.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data	Assay results are provided by the laboratory to Widgie Nickel in CSV, PDF and XLS formats, and then validated and entered into the database managed by an external Database contractor. Backups of the database are stored both in and out of office. Assay, Sample ID and logging data are matched and validated using filters in the drill database. The data is further visually validated by Widgie Nickel geologists and database staff. Significant intersections are verified by senior Widgie Nickel geologists. QAQC reports are run and the performance of the laboratory is evaluated periodically by senior Widgie Nickel geologists. No drill holes were twinned. Oxide Li ₂ O % value is calculated by multiplying elemental Li% by a factor of 2.153.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches,	A differential GPS (DGPS) has been used to determine the majority of drillhole collar locations, accurate to within 0.1 metres.

26 October 2023

	Section 1 Sampling	Techniques and Data
	mine workings and other locations used in Mineral	MGA94_51S is the grid system used in this program.
	Resource estimation.	Downhole survey using Reflex Sprint IQ gyro survey equipment was
	Specification of the grid system used	conducted during the program by the drilling contractor.
	Quality and adequacy of topographic control	Downhole Gyro survey data have been converted from true north to MGA94 Zone51S and saved into the data base. The formulas used are:
		Grid Azimuth = True Azimuth + Grid Convergence.
		Grid Azimuth = Magnetic Azimuth + Magnetic Declination + Grid Convergence.
		The Magnetic Declination and Grid Convergence have been calculated with and accuracy to 1 decimal place using plugins in QGIS.
		Magnetic Declination = 0.8
		Grid Convergence = -0.7
		Topographic control is provided by collar surveys drilled in this campaign, and by either collar survey or historical topographic surveys for historical data. Topographic control is considered adequate.
Data spacing and	Data spacing for reporting of Exploration Results	All RC drill holes were sampled at 1 metre intervals down hole. No sample compositing has occurred.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s)	Drilling at Faraday has been drilled to 10m x10m with Trainline infill drilled to 40m x 40m.
	and classifications applied.	Minor variation in drill spacing to allow for vegetation preservation.
	Whether sample compositing has been applied	The drill spacing is deemed adequate to establish appropriate geological continuity.
Orientation	Whether the orientation of sampling achieves	Previous drill holes and geological mapping aided in the
of data in	unbiased sampling of possible structures and the	determination that the interpretated pegmatite veins dip shallowly to
relation to geological	extent to which this is known, considering the deposit type.	the west at -20°.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All subsequent drilling was orientated at -60° towards the east at 090° to gain optimum drill angles orthogonal to the interpretated pegmatite veins.
Sample	The measures taken to ensure sample security	Pulps were submitted to Intertek Perth for assay.
security		Sample security was not considered a significant risk to the project.
		No specific measures have been taken by Widgie Nickel to ensure sample security beyond the normal chain of custody for a sample submission.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of the exploration program was undertaken prior to the drill program by Widgie Nickel geology management. Regular reviews and site visits have been made during the conduct of drill program. Staff and contract geologists have been based on site prior to, during and on completion of the drill and sample program to ensure proper quality control as per the modern mining industry standards.

26 October 2023

	Section 2 Reporting of E	xploration Results
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Faraday Lithium Project is located on mining lease M15/102, which is held by Widgie Nickel Ltd wholly owned subsidiary, Mt Edwards Critical Metals Pty Ltd. Estrella Resources Limited (ASX:ESR) holds a royalty of \$0.50 of 75% of each tonne of Lithium bearing ore extracted on M15/102. M15/102 was granted on 01/04/1985 and expires on 10/04/2027. There are no known impediments to mining in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Widgie Nickel has held an interest in M15/102 since July 2021, hence all prior work has been conducted by other parties. The ground has a long history of exploration and mining and has been explored for nickel since the 1960s, initially by Western Mining Corporation. Numerous companies have taken varying interests in the project area since this time. Only minor historical Lithium work in the form of wide spaced soil sampling has been completed on M15/102. Historical exploration results and data quality have been considered during the planning of ongoing exploration on M15/102.
Geology	Deposit type, geological setting and style of mineralisation.	The Mt Edwards Project lithium tenements cover the northern margin of the Widgiemooltha Dome. The mineralisation at Faraday is hosted within lithium-caesium-tantalum (LCT) pegmatites associated with fractionated late-stage granitic intrusions. The stacked pegmatites veins have intruded the steeply dipping mafic/ultramafic country rock dipping shallowly to the west at 20° and are found to be outcropping in places. The pegmatites widths vary from 1m to 14m in thickness, with greater thicknesses observed within the ultramafic host. The pegmatites have a strike length of 750m north-south, are open at depth.
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All exploration drill data has previously been reported. Grade control drilling data is not considered material to this report. All grade control drilling is drilled at 090 azimuth and at -60° dip.

26 October 2023

Г

٦

	Section 2 Reporting of Ex	xploration Results
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	No top-cuts have been applied. No metal equivalents have been reported.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept	These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	RC drilling is interpreted to have intersected the pegmatite veins at an orthogonal angle. Resulting in estimated down hole widths closely 80-95% resembling the estimated true width of the pegmatite veins.
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	Future diamond drilling is required to determine the actual true width of pegmatite veins. Where reliable structural data can be obtained.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	All exploration drilling has previously been reported
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All comparative interval assay results are reported within the body of the report in Table 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics potential deleterious or contaminating substances.	No further exploration data has been collected at this stage.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or large scale step out drilling.	Diamond drilling is planned for metallurgical sampling and structural data.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Updated Mineral Resource Estimate for Faraday and Trainline will be delivered in the near future with updated Fusion assays for Lithium.